Name:		Date:
	8 Honours Assignment 1.4 Prime Fa	
	ue of N such that the square root will	
a) $\sqrt{2^3 5^1 7^2 N}$	b) $\sqrt{4^2 7^2 5^2 N}$	c) $\sqrt{3^4 5^3 12N}$
d) $\sqrt{38412N}$	e) √13992 <i>N</i>	f) $\sqrt{664(N-1)}$
		·
2. Find the lowest val a. $\sqrt[3]{2^3 5^1 7^2 N}$	ue of \overline{N} such that the cube root will b. $\sqrt[3]{4^27^25^2N}$	become a positive integer: c. $\sqrt[3]{3^45^312N}$
·	·	·
	er of factors for each of the following	
a) $N = 2^3 3^5$	b) $N = 2^3 3^4 (25)$	c) $N = 3888$
	the of N such that the integer will have b) $(8) \times 27N$ (48 factors)	the indicated the indicated number of factors c) $2^{3}3^{4}N^{2}$ (56 <i>factors</i>)
	the factors for each of the following:	
a) 144	b) 7920	c) $2^3 \times 3^2 \times 5^3$

6. What is the largest prime factor of 3045?

- 7. Find *n*, such that $2^{3}3^{2}n = 10!$
- 8. How many factors of 4000 are perfect squares?
- 9. How many factors of 21,600 are perfect squares?
- 10. What is the least positive integer that is not a factor of 7!?
- 11. How many positive integral factors does N have if $N = 6^2 \times 15$?
- 12. What is the smallest positive integer by which 80 can be multiplied so that the product will be a perfect cube?
- 13. What is the smallest number that has 1 to 10 as its factors?
- 14. What is the smallest positive integer that has the numbers 1 to 20 as its factors?
- 15. What is the smallest number with 36 factors?

16. What is the sum of three greatest consecutive integers less than 200 for which the least number has 4 as a factor, the next has 5 as a factor, and the largest number has 6 as its factor?

- 17. What is the smallest positive integer n, for which 88 is a factor of n?
- 18. Two positive integers have a GCF of $2 \times 3 \times 5$ and a LCM of $2^3 \times 3^4 \times 5 \times 7$. If one of the numbers is 210, find the other number.

19. Find the smallest number N, such that $2^{3}3^{4}N^{2}$ has 56 factors.

20. Two numbers are "*relatively prime*" if they do not share any common factors other than 1. How many positive integers less than or equal to 40 are relatively prime to 40?

21. Challenge: Suppose there are 1000 lockers and 1000 people. The first person opens all the lockers; the second person closes every second locker; the third person changes the state of every third locker [ie: if it's open, he closes it or if it's closed, he opens it]. This process continues, where the nth person changes the state of every nth locker. After all 1000 people have gone through, how many lockers are open?